Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 252: 116145, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412685

RESUMO

Coronaviruses are single-stranded RNA viruses with high mutation rates. Although a diagnostic method for coronaviruses has been developed, variants appear rapidly. Low test accuracy owing to single-point mutations is one of the main factors in the failure to prevent the early spread of coronavirus infection. Although reverse transcription-quantitative polymerase chain reaction can detect coronavirus infection, it cannot exclude the possibility of false positives, and an additional multiplexing kit is needed to discriminate single nucleotide polymorphism (SNP) variants. Therefore, in this study, we introduced a new nucleic acid amplification method to determine whether an infected person has a SNP mutation using a lateral flow assay (LFA) as a point-of-care test. Unlike traditional DNA amplification methods, direct insertion into rolling circle amplification amplifies the target genes without false amplification. After SNP-selective nucleic acid amplification, nuclease enzymes are used to make double-stranded DNA fragments that the LFA can detect, where specific mismatched DNA is found and cleaved to show different signals when a SNP-type is present. Therefore, wild- and SNP-type variants can be selectively detected. In this study, the limit of detection was 400 aM for viral RNA, and we successfully identified a dominant SNP variant selectively. Clinical tests were also conducted.


Assuntos
Técnicas Biossensoriais , Infecções por Coronavirus , Humanos , RNA Viral/genética , DNA , Mutação , Técnicas de Amplificação de Ácido Nucleico/métodos
2.
Biosens Bioelectron ; 224: 115078, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641878

RESUMO

Electrochemical sensors are widely used for nucleic acid detection. However, they exhibit low sensitivity and specificity. To overcome these limitations, DNA amplification method is necessary. In this study, we introduced CRISPR (Clustered regularly interspaced short palindromic repeats) Cas12a-dependent hyperbranched rolling circle amplification (HRCA) into an electrochemical sensor platform. By resolving the existing false-positive issue of HRCA, CRISPR Cas12a determines the real positive amplification that able to enhance its sensitivity for extremely low concentrations of nucleic acids and specificity for single-point mutations. In detail, CRISPR Cas12a, which activates the nucleic acid amplification reaction, was used for both trans and cis cleavage for the first time. Finally, selectively amplified DNA was detected using a screen-printed electrode. Using the change in surface coverage by DNA, the electrochemical sensor detected a decrease in the redox signal. In summary, combining a novel DNA amplification method and electrochemical sensor platform, our proposed method compensates for the shortcomings of existing RCA and hyperbranched RCA, secures a high sensitivity of 10 aM, and overcomes false-positivity problems. Moreover, such creative applications of CRISPR Cas12a may lead to the expansion of its applications to other nucleic acid amplification methods.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Polimerização , Técnicas Biossensoriais/métodos , DNA/genética , Técnicas de Amplificação de Ácido Nucleico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...